

Approaches to deal with irradiated graphite in Russia – Proposal for new IAEA CRP on Graphite Waste Management

Vladimir Kascheev, Pavel Poluektov, Oleg Ustinov

WM-2012, *26.02.2012* – *01.03.2012*

The weight of the irradiated reactor graphite

- ➢ in the world− 250000 t
- ➢ in Russia 50000 t

→ RBMK -1000 – 1800 t → AMB -100/200 – 900 t

Uranium-graphite reactors in Russian Federation

Type of reactor	Number, status
Plutonium production reactors	13 units, at decommissioning stage
RBMK	11 units, in operation
EGP-4	4 units (Bilibino NPP), in operation
AMB 100\200	2 units (Beloyarsk NPP), at decommissioning stage
AM	1 unit (Obninsk, Kaluga reg.), at decommissioning stage

Estimates of ¹⁴C content in the irradiated reactor graphite

Reactor	Specific activity, Ci/t
AMB-100 (Beloyarsk NPP)	1,8 - 3,1
RBMK-1000 (Chernobyl NPP)	0,3
IR-A1 («MAYAK»)	0,5
I-1 (Siberian CC)	50
I-2 (Siberian CC)	30
ADE-3 (Siberian CC)	27
Sleeves (Siberian CC)	1,2

The presence of nuclear fuel in the irradiated reactor graphite

Reactor	Nuclear fuel weight (U) in a stack, kg
AMB-100 (Beloyarsk NPP)	70-150
I-1 (Siberian CC)	7,9
I-2 (Siberian CC)	3,6
ADE-3 (Siberian CC)	8
AV-1, AV-2, AV-3 («MAYAK»)	3-4
IR-A1 («MAYAK»)	2,75

1. Storage/disposal without processing

I-graphite is concreted into the reactor space.

Advantages

> No cost for equipment manufacturing and processing

Disadvantages

Costs for monitoring and operation

1. Storage/disposal without processing

"In-situ" disposal - the main concept for Russian plutonium production reactors

Russian legislation (The Federal law "About RWM") provides the transfer of radioactive waste into the category of "special", for which long-time controlled storage and disposal "in-situ" are acceptable

"Special" radioactive waste - radioactive waste for which the risks associated with radiation exposure, other risks and costs associated with the recovery of radioactive waste from the point of storage, followed by proper treatment, including disposal, outweigh the risks and costs associated with the disposal of radioactive waste in their location

2. Dismantling of the graphite stack

2.1 Loading of graphite blocks in containers

Disadvantages

- usage and placement of a large number of containers;
- recessity of the construction of an underground storage.

2.2 Utilization of dredged graphite

Advantages

> can be used as an energy source or as raw material for secondary graphite products.

Disadvantages

> contamination of the secondary products by radioactive isotopes, including ¹⁴C.

Separation problems of fuel spillage from graphite

Possible decisions

- Fuel dissolution in nitric acid;
- ➢ fuel chlorination and distillation of chlorides;
- > oxidation of graphite in molten salts;
- \succ oxidation of graphite in air flow.

Separation problems of fuel spillage from graphite

Disadvantages

Processing of graphite with nitric acid to fuel dissolve	 the necessity of washing the treated graphite with water and subsequent drying, as a result – formation of the secondary liquid radioactive waste; volume of i-graphite remains unchanged.
Chlorination of fuel and chlorides distillation	 the necessity of chlorination of the entire volume of graphite; the necessity of use of the complex high-temperature large-size equipment (approximately 6 - 15 times larger than the firebox for burning); the necessity of creation of a complex gas cleaning system; corrosion problems due to presence of chlorides; volume of i-graphite remains unchanged.

Separation problems of fuel spillage from graphite

	Advantages	Disadvantages			
The oxidation of graphite in molten salts	 elimination of the entire volume of graphite; partial capture of aerosols and ¹⁴C by salt melt; transferring the fuel spillage in a form suitable for further conditioning. 	 low rate of oxidation of graphite due to the screening of the graphite by salt melt; formation of an additional waste - contaminated salt; discharge of ¹⁴C into the atmosphere 			
The oxidation of graphite in an air flow	 elimination of the entire volume of graphite; the use of combustion equipment significantly smaller volume compared to the equipment using the salt melts; fuel allocation into a compact phase. 	 ▶ the necessity to create an efficient gas cleaning system; ▶ ¹⁴C release into the atmosphere. 			

¹⁴C in an environment

Main reaction of creation	¹⁴ N (n, p) ¹⁴ C
Half-life period T _{1/2}	5730 years
The rate of formation in the atmosphere from space radiation	4·10 ⁴ Ci/yr
Exchange pool (atmosphere, biosphere)	2,8·10 ⁸ Ci
Accumulation in the deep ocean	3,2·10⁹ Ci

Situation

Normal operation of each RBMK-1000 unit

Technological medium	Production of ¹⁴ C, Ci/yr	Discharge of ¹⁴ C, Ci/yr	
Coolant	30	30	
Gas mixture (He-N)	80 – 220	80-220	
Graphite moderator	400	0	
Nuclear fuel	90-150	0	
Total	600-800	110-250	

www.rosatom.ru

Situation	¹⁴ C discharge into the atmosphere during nuclear weapon tests - 1955-1963 years
	10 ⁷ Ci
<u>Consequences</u>	Increasing of 14 C concentration in the atmosphere by 60% 14 C concentration in norm to 2000 yr.
Estimation	Oxidation of i-graphite of all Russian nuclear power reactors (without plutonium-production reactors) gives an emission of ^{14}C 10^4-10^5 Ci

Comparison of population exposure doses due to ¹⁴C

Source	The effective equivalent dose, mSv/year	Acceptable dose for the population, mSv/year
Space radiation	0,012	1,0
Oxidation of i-graphite from 11 RBMK units per year	0,0018-0,015	

Radiation safety standards for ¹⁴C

The maximum acceptable concentration in air	Bq/m ³		
For the staff	1,3-10 ⁶		
For population	55		
Natural background	3,65·10 ⁻²		

Calculation for the medium-range weather conditions

¹⁴C concentration in the near-ground air layer from the source with the power of 1 Ci/day, located on the high of 100m

The distance from the source, km	1	2	4	6	8	10	16	20
A _{tech} /A _{nat}	1,76	2,65	1,76	1,20	0,88	0,69	0,46	0,31

A _{tech} - activity of technogenic ¹⁴C A _{nat} - activity of natural background ¹⁴C

The activity of natural background ¹⁴C – 3.65·10⁻² Bq/m³

Estimation for the medium-range weather conditions

Oxidation of i-graphite with a specific activity - 1 Ci/t of ¹⁴C

Stack height 120 m

There is no production of agricultural products at the nearest territory

There is a production of agricultural products at the nearest territory

It is permitted to burn up to 4 tons per a day

It is permitted to burn up to 50 tons per a day

www.rosatom.ru

Technological modes of graphite oxidation in air flow

The temperature in the furnace volume The speed of air flow through ۲ a graphite layer The speed of air flow over the ۲ layer The height of the layer of graphite 0 Graphite grain size 0 Air-fuel ratio

900 - 1200°C till 1,0 m/s 2 - 5 m/s100 - 300 mm25 - 35 mm1,45 - 1,50

Unit of the burning of spent reactor graphite

Consist of

- Node grinding graphite blocks
 Dispenser, which provides
 uniform graphite loading
- ➢ Furnace for burning graphite (heating) with a capacity of 1 kg/h
- Knot of afterburner of exhaust gases and aerosols
- Node of collection of the ash residue, which includes a heated bath of molten salt
- Gas cleaning system
- Forced-draught fans
- Smoke exhauster

Technical conditions

- Furnace and subsequent nodes should be provided by devices to measure resistance to gas flow
 The furnace, the node of afterburner and the metal-ceramic filter should be provided by the temperature measurements
 Before and after each node requires sampling point of gas samples
 Capacity of the unit for air flow
- 12 normal m³/h.
- > The speed flow of the supply air -0,1-1,0 m/s

The scheme of unit of the reactor graphite processing by burning

1 – Fragmentation node; 2 – Milling unit; 3 – Dispenser; 4, 16 – Gas- blowers; 5 – Heater; 6 – Node of graphite burning;
 7 – Node of collection of the ash residue; 8 – Knot of afterburner of exhaust gases and aerosols; 9 – Cyclone; 10 – Heat exchanger; 11 – Compressor; 12 – Metal-ceramic filter; 13 – water cooler apparatus; 14 – HEPA filter; 15 – Bubble condenser;

The view of the unit of the reactor graphite processing by burning

Contacts:

Kascheev Vladimir Director of the department Center of SNF and RW management JSC "VNIINM"

ppp@bochvar.ru +7 (499) 190 - 82 - 27